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ABSTRACT. The confinement properties of reactor-scale stellarators in the presence of a self-consistent
ambipolar potential ® are examined in the light of the current theoretical expectations for the dependence
of the transport coefficients on collisionality and radial electric field. It is found that stellarators have
sufficiently good confinement to be viable as reactors. In addition, it is found that multiple roots of the
ambipolarity constraint can exist in stellarators (as in other devices) and that, for appropriate parameters, con-
finement can be improved by operating at a root different from the one usually considered.

1. INTRODUCTION

In this paper we consider the effect on transport of
the ambipolar potential ®(r) in a stellarator with
reactor-like parameters. The basic conceptual approach
we use is similar to previous work [1, 2] in stellarator
transport. Given expressions for the particle fluxes I}
for electrons (s =e) and ions (s =i) as a function of
radial electric field, E,= —®'(r), E; is determined self-
consistently by imposing the ambipolarity constraint
I‘le =T}. This value of E; is then used to determine
both the particle and heat fluxes.

The present work has a number of features, however,
in which more recent developments in transport
theory are utilized. The appropriate expressions for
transport coefficients at low collisionality (or strong
electric field) [3, 4] are different from those employed
in Refs [1, 2]. Also, the fact that particles of the same
species but with different energies contribute to
different transport regimes has been taken account of
here, in contrast to Ref.[1].

In addition, it is shown here that for appropriate
parameters, multiple roots ®;(j = 1, 2, 3) of the ambi-
polarity constraint exist. Multiple roots have previously
been found for the Elmo Bumpy Torus [5] and more
recently for tandem mirrors [6]. Of the roots which
are stable to radial fluctuations in charge density, the
one (®d,) which is present for all device parameters is
that for which the ions are held in by the electrons
(®(r = 0) negative). It is this root to which the system
should move, if started with ®(t = 0) =0, and with
T;= T, and it is the root normally looked at [1, 2].
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For suitable parameters, however, there is a second
stable root ®,, at positive ® and of substantially
larger magnitude, and the confinement times for this
root can be significantly longer than those for $,.
Thus it is of interest to consider when this root may
be accessed in an experimental situation and how much
improvement may be obtained.

In view of these developments, and particularly in
view of the renewed interest in whether stellarators
possess sufficiently good confinement to make viable
reactors, a reassessment of the theoretical expectations
for stellarator confinement times seems warranted. We
find that acceptably long confinement times (g 21 s)
can be achieved for reasonable reactor parameters,
though by only a modest margin.

In Section 2 we describe the transport model and
assumptions going into the results presented in the
following sections. Section 3 presents results for a
reactor-size stellarator and discusses the physics and
parametric dependences of the standard root ®,. In
Section 4 the possibility of operation at the second
stable root is investigated. Some summarizing
comments are made in Section 5.

2. THE TRANSPORT MODEL

The results presented in Sections 3 and 4 are plots
of the expected particle and energy fluxes versus

®; = e®'/T;, where e = ¢; is the ion charge and T; the
ion temperature. The fluxes come from doing the
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FIG.1. Log-log plot of diffusion coefficient D g versus v/,
showing the three low-collisionality regimes (q=—1, 1/2, 1) used
in the text.

appropriate energy integral over the three low-
collisionality regimes [1—4] of transport, shown in
Fig.1 (axes are log-log). For particles with kinetic
energy E = Mv?/2, the transport coefficients are
given by

3/2 2 7/2

D_I(E) = ( h) = D-].T X 1
- 1/2 2,, 3/2 _ 5/4
Dy/a(E) = oV "vp" /2™ " = Dy oy X (2)
DI(E) =0 W VBZ/[QEZ(ZCh)l/ZJ
172 3)

Dyt %

where p = €p /€y, €, (r) is the helical ripple amplitude,
€¢(r) = /R, is the inverse aspect ratio, x =E/T, Qf
is the E X B poloidal precession frequency, vg < x
is the radial grad-B drift, » = pp X ¥? is the collision
frequency for a particle with energy E, vt is the
thermal collision frequency, and Dqt = Dq(E =T),
for each of g =—1, 1/2, 1. Here, q is the power of
v appearing in Dg in Eqs (1--3). The o4 here are
numerical coefficients arising from kinetic theory,
givenby g, = 0.65,0,,=1.67and 0, = 1.0.

For any function g(E), the radial flux I'y of g is
(species label suppressed)

g = ~4n [ dv Lg(E) D(E) a.f]

. l2 12

an v [ ax xM2g 00 f, (4)
where
n
af = 0 e-x
ro 372 3
(2n) Vi
. 3
X[arn.n n,* ¢ +arznT(x -?)] )
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Here, ¢' = ¢ = e, 0, P/T; (s=e¢,i). From Eq.(4), T,
is the particle flux and I'g = TT is the energy flux.
Putting Eq.(5) into Eq.(4), one has

2

r = « (——n

(x") T o)

X %Dq.r{[arﬂ.n n, + 6 1 I(x,nq)|t

+a.an T LI(xn ) - 3 1xen )1 (6)

q+l ) *7q -

where
ng = % - -g- q+r (7N

is the power of x occurring in the integral (4), yielding
the integral

I{x,n) = ["dx1 xq e*1 8)

to be evaluated. I(x, n) satisfies the recursion relation

-Xq X
I(x,n) = -xq e 1| +n I(x,n-1) 9)

Thus, for n an integer,

n n-1 1

I(x,n) = -n!(:—.,- + nx- !

and for any n > 0,

I{x,n) |- = r(n + 1) = n!

o (10b)

-

with I' (n) the usual gamma function. The limits ‘+’
in Eq.(6) denote the upper and lower boundaries of
the three g-regions, determined by the values of x for
which the Dg’s for two neighbouring g-values are equal.
For p = ep /e > 1, all three Dg’s contribute. For
p<1,only D, and D, contribute, since the width of
the q = 3 reglon vamshes

It will be useful to denote the term in{ } in Eq.(6)
by a symbol ‘Fgq’,

(}znlFla (11

‘F’ stands for the thermodynamic ‘force’ from the
g-contribution to flux I'y. It is normalized to be
dimensionless and is independent of T, ny or minor
radius a.
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FIG.2. Plots of the normalized particle fluxes 75, (a) and energy
fluxes 7:( (b) versus potential ¢ for a stellarator with n =10 cm™3,
Te=T;=10keV,B=5T,a=25m, €;=0.1and €¢,=0.05 at
rla=0.5. Shown is the single root ¢, to the ambipolarity
constraint, and the point ¢y at which the electron flux becomes

negative.

3. OPERATION AT ¢,

In the following results, [y is normalized to
% =Tg/(nga), which has units of s*. The confinement
times are then given by

(12)

The usual tokamak formula is Tg = a?/4xg = 1/4v, . The
factor-of-four enhancement in 7, in Eq.(12) is to
approximately account for the much stronger
T-dependence of Dgq compared with the tokamak
transport coefficients. This tends to flatten the
T(r)-profile to a form like [J,(2.404 r/a)] l/mq, where
1< Mg ~ Ng, instead of the tokamak formula, for which
mg=1.

We begin by plotting Y1x Versus ¢ = a¢{ for a
reactor-like configuration in Fig. 2, for which
n=10%cm3, T;j=T.=10keV,B=5T,2a=2.5m,
ea=€t(p=1)=0.1and ey (p)=0.05at p=r/a=0.5,
so that p(p = 0.5) = €,,(0.5)/€; (0.5) = 1. Ambipolarity
is satisfied at the single root ¢ = ¢, = —1.4, at which
M=y =135, 78, =(v8,) = 2.2sand i, = 2.2 5.
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(Here the first subscript (1,x) refers to g, and the
second subscript (1 only here) refers to the root
number.) This single root is the one considered in
Refs [1] and {2] (though there it was assumed that
D,,,, rather than the present Dy, is the form which
applies at large x).

At root 1, the electrons are mostly in the q=-1 (1)
regime and hold in the ions, which are principally in
the q=1 regime. The modest size of [¢,]is due to the
fall-off of Dy with increasing |¢| or £2g, and also to
the weak energy dependence of D;, which causes
the ion forces F’1 X to become negative at fairly small |¢|.

The principal point of Fig.2 is that 74 2 1 s is
achievable with reasonable reactor parameters, though
not by a large margin. Additional enhancement of 7y
could come from a number of factors:

(a) Further adjustment of parameters, using the fact
that 7%, ~ e 2€2TY?B2n'a®. For example,
sufficient rotational transform could be obtained
for a stellarator with half the €, used in Fig.2 [7].
The density could realistically be doubled.
Operating at only 8 keV would enhance 75; by
an additional factor of two.

(b) Tailoring of the magnetic fields to minimize the
(velocity-space-averaged) radial drift velocity of
helically trapped particles [8]. Another order of
magnitude in 7y could possibly be derived from
such optimization.

(c) An ‘enhancement factor’ greater than the factor
of four used in Eq.(12) may be appropriate, to
account for the weaker fall-off (except near the
edge) of T(r). One-dimensional solutions of the
transport equations would answer more definitively
whether the factor of four is adequate or not.

(d) Operating at a different root of the ambipolarity
equation. This possibility is discussed next.

4. MULTIPLE ROOTS

Figure 3 shows v, and vy for a = 1 m (otherwise the
same parameters are used as for Fig.2). Here a new
possibility is illustrated. One sees that the ambipolarity
condition v} = 7% is met at three values of ¢, of which
two, labelled ¢, and ¢,, are stable, as already
mentioned. In contrast to ¢, =—0.4, at root 2,
¢, = 3.3 is positive and rather large. Here, the ions
hold in the electrons, which require a large potential
because of the strong energy dependence of Df! « x7?,
This large potential in turn greatly diminishes D’ « ¢72,

1055



MYNICK and HITCHON

LRALL BRALLLL BRRLLL B R AL

FIG.3. Same as Fig.2, but fora=1 m. The second stable root
¢, present for these parameters is indicated.

which permits the electrons to escape more rapidly
than the ions in the first place.

The most significant feature of root 2 here is that
its confinement is much better than that of root 1.

One sees that 7,,22 0.65 s, 75, = 0.07 sand 73, = 0.18 s,
while 7, = 7.7 s, 75, = 0.31 sand 7y, = 2.9 s, so that
TiafTn = 12, 75%./7% = 4.4 and Tx2/Txa = 16.

Since a is only one metre in Fig.3, one might hope
to achieve 7 2 | s simply by increasing a to a more
typical reactor-size value. In Figs 2 and 4 are shown
the 7, x curves for the scaled-up versions of Fig.3,
with a = 2.5 and 1.6 m, respectively. One notes a loss
of roots 2 and 3, with a = 1.6 m being approximately
the marginal point at which these two roots coalesce
and then vanish. As that point is approached, the
relative advantage of root 2 over root 1 is diminished.
In Fig.4, 1y5/7y=5.1/2.4=2.1, Tea /T =0.71/0.4=1.8
and 7x,/my = 2.0/0.65 = 3.1.

Pictorially, the reason for the loss of roots is that
the ion fluxes fall off more slowly with ¢ as a increases,
so that I} cannot become smaller than I'f « D*F}
before FS (¢) becomes negative, at ¢ = ¢ (indicated
in Figs 2—4). Physically, this broadening of the ion
peak in I''(¢) occurs for the following reason: If a is
doubled (but ® or ¢ kept constant), Qg is reduced by
1/4 (half as large an E X B velocity vg and twice as far
to drift). Since the potential strength needed to reduce
D' from D!, to Dlm,1
doubling a broadens the I"'(¢) peak by roughly 4. In
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is given by 1 = vp;/QE (Vhs= vs/2€n),

other words, the size of & is governed.by the operating
temperature T, and not by the linear dimension (<« a)
of the device. Thus, if a is varied, one sees that T
should also be scaled in some fashion, if the transport
characteristics are to remain the same.

To make these ideas more precise, we develop an
explicit form for the ambipolarity equation. We
assume that the ions are entirely in the q =1 regime
and the electrons in the g = —1 regime. In the vicinity
of ¢ = 0, where the ions should actually have q = —1,
"> I'®, s0 no roots occur in this region anyway.
Roots 2 and 3 will thus occur if

[ e a
I < i e Par F () (13)
- i n, I T i
Iy 17 0,2(0) F(9)

for some interval of ¢ > 0. The places where ¢ enters
are explicitly noted in Eq.(13). With the inequality
in Eq.(13) replaced by an equality, Eq.(13) is the
equation for the roots ¢, , 3. As will be seen shortly,
Eq.(13) is cubic in ¢. From Eq.(11),

.
F2(0) = alk_+ (n_, - PK] - (90
T

e

(14a)

Fl(e) = alk + (n) = K] + 6 2 0; + ¢ (140)

3
% E
E (b)
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o' |
2 |
102 - J |
io? F % I 1 ! 1 i ¢

FIG.4. Same as Fig.3, but fora=1.6 m.

NUCLEAR FUSION, Vol.23, No.8 (1983)




] J d
BAAL BRALLL IR T Ty

nOE (b)
|.O§ 1
W F |
N7 |
10?2 ‘k i
o’ o 2 T ; ¢
$, ¢,

FIG.5. Same as Fig.3, but fora=2.5m, T=20.8 keV.

where K, T=0,2n (ny, T), ¢F is the value of ¢ at
which F§ = 0 (as already noted), and similarly for the
ion counterpart —¢;.

One has

g = Q70 (15a)

where

PR a P 2 l‘ T -
g =T PR =10 e 2 !
(15b)

In the final form here, the units are: T (10 keV),
B (T), a(m). Similarly, we write
2 . Miy1/2 -3/2
vox 1.2 x 10 [(E) ngTe ] (16)

Thus, from Eqgs (1) and (3),

1 e
n_y! D_”.
n,. e

S )

Teyi/21 FnlE 12 2

; P 'V,

4! = 4al
17 G : ¢ = do amn
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where
5/2
(2¢,) T3
d = 0.39 x lo'*[%r—h—;-—-)zl (18)
(;) B a'n,

with the parameters in square brackets here in the same
units as in Eqs (15b) and (16). (Thus, for example, for
the parameters of Fig.3, d = 0.624 ~ 1.0). Using

Eqgs (14a), (14b) and (17) in Eq.(13), therefore,

Te 2 (¢F = ¢)

With the equality holding in Eq.(19), this is a cubic
in ¢, as already noted. The inequality will hold (and
so real roots ¢, 3 will exist) for d; = (dTe/T;) large
enough, i.e. for I'(¢) ~ (d¢?)? sharply enough peaked.

The right-hand side of Eq.(19) is a maximum at

o = 8 i
m n
¢ -
o (=P 400,12 (20)

;e_._‘._.___.__.__.___
';6___.,__.___._

FIG.6. Sameas Fig.3, butfora=25m, T= 143 keV.
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FIG.7. Position in the (a, T) plane of the configurations of
Figs 2—6. Configurations on the same line B; are ‘homomorphic’
to one another.

Substituting this for ¢ in Eq.(19) yields an explicit
criterion for the existence of roots 2,3.

Parameter variations leaving Eq.(19) unchanged
provide useful scaling laws. Since from Eq.(18)

d ~ T{/a*, while from Eq.(14) ¢ and ¢ are inde-
pendent of T and a, one sees that if T and a are varied
together so that T ~ a¥®, Eq.(19) is unchanged, and
the roots ¢; will also be unchanged. This is shown in
Figs 5 and 6, in which Figs 3 and 4, respectively, are
scaled in this fashion up to linear dimension a = 2.5 m.
Thus T = (2.5)¥5(10 keV) == 20.8 keV for Fig.5 and
T=(2.5/1.6)%% (10 keV) = 14.3 keV for Fig.6. One
notes that the shapes of the curves 751,,( (¢) in Figs 5
and 6 are almost the same as those of Figs 3 and 4,
but with the vertical scale changed (‘homomorphic’
configurations), indicating that our approximating
both species as being entirely in a single g-regime is
appropriate.

Figure 7 shows the position in the (a, T) plane of
the set of configurations in Figs 2—6. Along the
contours B; are homomorphic configurations, satis-
fying T ~a¥5. B, is the configuration along which
roots 2 and 3 marginally exist. Configurations to the
left and above it must operate at root 1.

Typical values needed for a reactor are a ~ 2 m,
T~ 10 keV and 74 ~1 s. As illustrated by the points
for Figs 2 and 6, for these required values the position
in question is near or above the contour in By in Fig.7.
Thus, given these operating parameters, operation at
root 2 instead of root 1 would seem to provide a
relatively small enhancement of 74, of perhaps a
factor of 2—3. The relative advantage might be much
greater if some other set of reactor constraints (e.g. a
larger plant output, or different fuel, requiring higher
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operating temperature) demanded a plasma with
larger d,.

In order to access root 2 experimentally, it would
be necessary to develop an initial positive potential
& (t = 0) greater than the unstable root $;. Once
® > &, is achieved, the system will develop the
remainder of the required potential by itself. One
possible route to developing this initial positive ‘seed’
potential may be through heating the electrons first
through ECRH, so that DSy > D';;. Then, for
sufficiently low density that the ion-electron tempera-
ture equilibration is not too rapid, the required
positive potential can be attained, and the plasma can
then be brought up to operating density and tempera-
ture on the positive root.

5. DISCUSSION

From the results presented here, it appears that
stellarators have sufficiently good confinement to
make an acceptable reactor. A number of ways of
enhancing the transport (while remaining within
acceptable limits for operating parameters) have been
noted, including the possibility of operation at an
ambipolar potential which is large and positive.

The results presented here should be regarded as an
initial reassessment of theoretical expectations for
stellarators, given a number of new developments in
stellarator theory. A number of additional refinements
might also be helpful. The results here assume purely
diffusive transport, neglecting the possibility of direct
losses. Moreover, the present work is ‘zero-dimensional’,;
¢’ and the fluxes are determined at a single radius r.

As noted in Section 3, a one-dimensional solution,
yielding radial profiles of all relevant parameters, would
be useful to check the present zero-dimensional results.
In this connection, we note that, if operation at ¢,
toward smaller r is desired, as the edge is approached
and the temperature drops, it is likely that a loss of
roots 2 and 3 will occur, requiring the plasma to make
a transition to root 1. A similar phenomenon may
occur in tandem mirrors [6], though this appears to be
highly sensitive to geometry [9].
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